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Abstract

We investigate high-frequency volatility models for analyzing intradaily tick by

tick stock price changes using Bayesian estimation procedures. Our key interest

is the extraction of intradaily volatility patterns from high-frequency integer price

changes. We account for the discrete nature of the data via two different approaches:

ordered probit models and discrete distributions. We allow for stochastic volatility

by modeling the variance as a stochastic function of time, with intraday periodic

patterns. We consider distributions with heavy tails to address occurrences of jumps

in tick by tick discrete prices changes. In particular, we introduce a dynamic version

of the negative binomial difference model with stochastic volatility. For each model

we develop a Markov chain Monte Carlo estimation method that takes advantage of

auxiliary mixture representations to facilitate the numerical implementation. This

new modeling framework is illustrated by means of tick by tick data for two stocks

from the NYSE and for different periods. Different models are compared with each

other based on predictive likelihoods. We find evidence in favour of our preferred

dynamic negative binomial difference model.
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1 Introduction

High-frequency price changes observed at stock, futures and commodity markets can

typically not be regarded as continuous variables. In most electronic markets, the smallest

possible price difference is set by the regulator or the trading platform. Here we develop

and investigate dynamic models for high-frequency integer price changes that take the

discreteness of prices into account. We explore the dynamic properties of integer time

series observations. In particular, we are interested in the stochastic volatility dynamics

of price changes within intradaily time intervals. This information can be used for the

timely identification of changes in volatility and to obtain more accurate estimates of

integrated volatility.

In the current literature on high-frequency returns, price discreteness is typically ne-

glected. However, the discreteness can have an impact on the distribution of price changes

and on its volatility; see, for example, Security and Exchange Commission Report (2012),

Chakravarty et al. (2004) and Ronen and Weaver (2001). Those assets that have prices

with a spread of almost always equal to one tick are defined as large tick assets; see, Eisler

et al. (2012). These large tick assets are especially affected by the discreteness through

the effect of different quoting strategies on these assets; see the discussions in Chordia

and Subrahmanyam (1995) and Cordella and Foucault (1999). Also the effect of liquidity

on large tick assets can be substantial as it is documented by O’Hara et al. (2014) and

Ye and Yao (2014). Many large tick assets exist on most US exchange markets as the

tick size is set to only one penny for stocks with a price greater than 1$ by the Security

and Exchange Commission in Rule 612 of the Regulation National Market System. Hence

almost all low price stocks are large tick assets. Moreover, many futures contracts are not

decimalized for example, five-years U.S Treasury Note futures and EUR/USD futures fall

into this category; see Dayri and Rosenbaum (2013).

The relevance of discreteness and its effect on the analysis of price changes have been

the motivation to develop models that account for integer prices. Similar to the case

of continuous returns, we are primarily interested in the extraction of volatility from

discrete price changes. We consider different dynamic model specifications for the high-

frequency integer price changes with a focus on the modeling and extraction of stochastic

volatility. We have encountered the studies of Müller and Czado (2009) and Stefanos

(2015) who propose ordered probit models with time-varying variance specifications. We

adopt their modeling approaches as a reference and also use their treatments of Bayesian

estimation. The main novelty of our study is the specification of a new model for tick

by tick price changes based on the discrete negative binomial distribution which we shall

refer to shortly as the ∆NB distribution. The properties of this distribution are explored

in detail in our study. In particular, the heavy tail properties are emphasized. In our

analysis, we adopt the ∆NB distribution conditional on a Gaussian latent state vector
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process which represent the components of the stochastic volatility process. The volatility

process accounts for the periodic pattern in high-frequency volatility due to intradaily

seasonal effects such as the opening, lunch and closing hours. Our Bayesian modeling

approach provides a flexible and unified framework to fit the observed tick by tick price

changes. The ∆NB properties closely mimic the empirical stylized properties of trade by

trade price changes. Hence we will argue that the ∆NB model with stochastic volatility

is an attractive alternative to models based on the Skellam distribution as suggested

earlier; see Koopman et al. (2017). We further decompose the unobserved log volatility

into intradaily periodic and transient volatility components. We propose a Bayesian

estimation procedure using standard Gibbs sampling methods. Our procedure is based

on data augmentation and auxiliary mixtures; it extends the auxiliary mixture sampling

procedure proposed by Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter

et al. (2009). The procedures are implemented in a computationally efficient manner.

In our empirical study we consider two stocks from the NYSE, IBM and Coca Cola,

in a volatile week in October 2008 and a calmer week in April 2010. We compare the in-

sample and out-of-sample fits of four different model specifications: ordered probit model

based on the normal and Student’s t distributions, the Skellam distribution and the ∆NB

model. We compare the models in terms of Bayesian information criterion and predictive

likelihoods. We find that the ∆NB model is favored for series with a relatively low tick

size and in periods of more volatility.

Our study is related to different strands in the econometric literature. Modeling

discrete price changes with static Skellam and ∆NB distributions has been introduced by

Alzaid and Omair (2010) and Barndorff-Nielsen et al. (2012). The dynamic specification

of the Skellam distribution and its (non-Bayesian) statistical treatment have been explored

by Koopman et al. (2017). Furthermore, our study is related to Bayesian treatments of

stochastic volatility models for continuous returns; see, for example, Chib et al. (2002),

Kim et al. (1998), Omori et al. (2007) and, more recently, Stroud and Johannes (2014). We

extend this literature on trade by trade price changes by explicitly accounting for prices

discreteness and heavy tails of the tick by tick return distribution. These extensions

are explored in other contexts in Engle (2000), Czado and Haug (2010), Dahlhaus and

Neddermeyer (2014) and Rydberg and Shephard (2003).

The remainder is organized as follows. In Section 2 we review different dynamic model

specifications for high-frequency integer price changes. We give most attention to the

introduction of the dynamic ∆NB distribution. Section 3 develops a Bayesian estimation

procedure based on Gibbs sampling, mainly for the ∆NB case of which the Skellam

is a special case. In Section 4 we present the details of our empirical study including a

description of our dataset, the data cleaning procedure, the presentation of our estimation

results and a discussion of our overall empirical findings. Section 5 concludes.
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2 Dynamic models for discrete price changes

We start this section with a discussion of dynamic volatility modeling for high-frequency

data. Next, we review models for integer valued variables based on such a dynamic

volatility specification. The first group of these models includes the ordered probit models

based on normal and Student’s t distributions with stochastic volatility. The second

group is captured by our novel dynamic negative binomial difference (∆NB) model with

stochastic volatility, which nests the dynamic Skellam model as a special case. We then

present the main features of our newly introduced ∆NB model.

2.1 Dynamic volatility specification

To capture the salient empirical features of high-frequency trade by trade price changes

such as intradaily volatility clustering and persistent dynamics one typically specifies the

following dynamic models for the log volatility ht:

ht = µh + xt, xt+1 = ϕxt + ηt, ηt ∼ N
(
0, σ2

η

)
, (1)

for t = 1, . . . , T , where t is a transaction counter (and not a time index), and where

µh is the unconditional mean of the log volatility of the continuous returns, xt is a zero

mean autoregressive process (AR) of order one, as denoted by AR(1), with ϕ as the

persistence parameter for the log volatility process and σ2
η as the variance of the Gaussian

disturbance term ηt. The mean µh represents the daily log volatility and the autoregressive

process xt captures the changes in log volatility due to firm specific or market information

experienced during the day. The latent variable xt is specified as an AR(1) process with

zero mean; this restriction is enforced to allow for the identification of µh.

However, there is also another stylized fact of intradaily price changes which is the

seasonality pattern in the volatility process. In particular, the volatility at the opening

minutes of the trading day is high, during the lunch-hour it is lowest, and at the closing

minutes it is increasing somewhat. We can account for the intradaily volatility pattern

by further decomposing the log volatility ht into a deterministic daily seasonal pattern st

and a stochastically time varying signal xt as

ht = µh + st + xt, E(st) = 0, (2)

where st is a normalized spline function with its unconditional expectation equal to zero.

Such a specification allows us to smoothly interpolate different levels of volatility over the

day. We enforce the zero mean constraint via a simple linear restriction.

In our model we specify st as an intradaily cubic spline function, constructed from

piecewise cubic polynomials. More precisely, we adopt the representation of Poirier (1973)
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where the periodic cubic spline st is based on K knots and the regression equation

st = wtβ, (3)

where wt is a 1 × K weight vector and β = (β1, . . . , βK)′ is a K × 1 vector containing

the values of the spline function at the K knots. Further details about the spline and

the Poirier representation are presented in Appendix B. In our empirical study we adopt

a spline function with K = 3 knots at {09:30, 12:30, 16:00}. The spline function also

accounts for the overnight effect of high volatility at the opening of trading due to the

cumulation of new information during the closure of the market. The difference of βK

(market closure 16:00) and β1 (market opening 9:30) measures the overnight effect in

log volatility ht. This treatment of overnight effects follows Engle (2000) and Müller

and Czado (2009); alternatively we can introduce a daily random effect for the opening

minutes of trading. For such alternative treatments of intradaily seasonality and overnight

effects, we refer to Weinberg et al. (2007), Bos (2008) and Stroud and Johannes (2014).

2.2 Ordered normal stochastic volatility model

In econometrics, the ordered probit model is typically used for the modeling of ordinal

variables. But we can also adopt the ordered probit model in a natural way for the

modeling of discrete price changes. In this approach we effectively round a realization

from a continuous distribution to its nearest integer. The continuous distribution can be

subject to stochastic volatility; this extension is relatively straightforward. Let r∗t be the

continuous return which is rounded to rt = k when r∗t ∈ [k − 0.5, k + 0.5). We observe

rt and we regard r∗t as a latent variable. By neglecting the discreteness of rt during the

estimation procedure, we clearly would distort the measurement of the scaling or variation

of r∗t . Therefore we need to take account of the rounding of rt by specifying an ordered

probit model with rounding thresholds [k− 0.5, k + 0.5). We assume that the underlying

distribution for r∗t is subject to stochastic volatility. We obtain the following specification

rt = k, with probability Φ

(
k + 0.5

exp(ht/2)

)
− Φ

(
k − 0.5

exp(ht/2)

)
, for k ∈ Z, (4)

for t = 1, . . . , T , where ht is the logarithm of the time varying stochastic variance for the

standard normal distribution with cumulative density function Φ(·) for the latent variable

r∗t . The dynamic model specification for ht is given by (1).

Similar ordered probit model specifications with stochastic volatility are introduced

by Müller and Czado (2009) and Stefanos (2015). In the specification of Müller and

Czado (2009), the rounding barriers are not necessarily equally spaced but need to be

estimated. This further flexibility may improve the model fit compared to our basic
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ordered SV model specification. On the other hand, the more flexible model can only be

fitted to data accurately when sufficient observations for each possible discrete outcome

are available. If you only have a few price jumps of more than, say, ± 10 tick sizes, it

may become a problem to handle such large outcomes.

The basic model specification (1) and (4) accounts for the discreteness of the prices

via the ordered probit specification and for intradaily volatility clustering via the possibly

persistent dynamic process of xt. The model can be modified and extended in several ways.

First, we can account for the market microstructure noise observed in tick by tick returns

(see for example, Aı̈t-Sahalia et al., 2011 and Griffin and Oomen, 2008) by including

an autoregressive moving average (ARMA) process in the specification of the mean of

r∗t . In a similar way, we can facilitate the incorporation of explanatory variables such as

market imbalance which can also have predictive power. Second, to include predetermined

announcement effects, we can include regression effects in the specification as proposed in

Stroud and Johannes (2014). Third, it is possible that the unconditional mean µh of the

volatility of price changes is time varying. For example, we may expect that for larger

price stocks the volatility is higher and therefore the volatility is not properly scaled when

the price has changed. The time-varying conditional mean of the volatility can be easily

incorporated in the model, by specifying a random walk dynamics for µh, which would

allow for smooth changes in the mean over time. For our current purposes below we can

rely on the specification as given by equation (2).

2.3 Ordered t stochastic volatility model

It is well documented in the financial econometrics literature that asset prices are sub-

ject to jumps; see, for example, Aı̈t-Sahalia et al. (2012). However, the ordered normal

specification, as we have introduced it above, does not deliver sufficiently heavy tails

in its asset price distribution to accommodate the jumps that are typically observed in

high-frequency returns. To account for the jumps more appropriately, we can consider a

heavy tailed distribution instead of the normal distribution. In this way we can assign

probability mass to the infrequently large jumps in asset returns. An obvious choice for a

heavy tailed distribution is the Student’s t-distribution which would imply the following

specification,

rt = k, with probability T
(

k + 0.5

exp(ht/2)
, ν

)
− T

(
k − 0.5

exp(ht/2)
, ν

)
, for k ∈ Z, (5)

which effectively replaces model equation (4), where T (·, ν) is the cumulative density

function of the Student’s t-distribution with ν as the degrees of freedom parameter. The

model specification for ht is provided by equation (1) or (2).

The parameter vector of this model specification is denoted by ψ and includes the

6



degrees of freedom ν, the unconditional mean of log volatility µh, the volatility persistence

coefficient ϕ, the variance of the log volatility disturbance σ2
η, and the unknown vector

β in (3) with values of the spline at its knot positions. In case of the normal ordered

probit specification, we can rely on the same parameters but without ν. The estimation

procedure for these unknown parameters in the ordered probit models are carried out by

standard Bayesian simulation methods for which the details are provided in Appendix C.

2.4 Dynamic ∆NB model

Positive integer variables can alternatively be modeled directly via discrete distributions

such as the Poisson or the negative binomial, see Johnson et al. (2005). These well-

known distributions only provide support to positive integers. When modeling price

differences, we also need to allow for negative integers. For example, in this case, the

Skellam distribution can be considered, see Skellam (1946). The specification of these

distributions can be extended to stochastic volatility model straightforwardly. However,

the analysis and estimation based on such models are more intricate. In this context,

Alzaid and Omair (2010) advocates the use of the Skellam distribution based on the

difference of two Poisson random variables. Barndorff-Nielsen et al. (2012) introduces

the negative binomial difference (∆NB) distribution which has fatter tails compared to

the Skellam distribution. Next we review the ∆NB distribution and its properties. We

further introduce a dynamic version of the ∆NB model from which the dynamic Skellam

model is a special case.

The ∆NB distribution is implied by the construction of the difference of two negative

binomial random variables which we denote by NB+ and NB− where the variables have

number of failures λ+ and λ−, respectively, and failure rates ν+ and ν−, respectively. We

denote the ∆NB variable as the random variable R and is simply defined as

R = NB+ −NB−.

We then assume that R is distributed as

R ∼ ∆NB(λ+, ν+, λ−, ν−),

where ∆NB is the difference negative binomial distribution with probability mass function

given by

f∆NB(r;λ+, ν+, λ−, ν−) = m×

d
+ × F

(
ν+ + r, ν−, r + 1; λ̃+λ̃−

)
, if r ≥ 0,

d− × F
(
ν+, ν− − r,−r + 1; λ̃+λ̃−

)
, if r < 0,
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where m = (ν̃+)
ν+

(ν̃−)
ν−

, d[s] = (λ̃[s])r(ν [s])r / r!,

ν̃ [s] =
ν [s]

λ[s] + ν [s]
, λ̃[s] =

λ[s]

λ[s] + ν [s]
,

for [s] = +,−, and with the hypergeometric function

F (a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (x)n is the Pochhammer symbol of falling factorial and is defined as

(x)n = x(x− 1)(x− 2) · · · (x− n+ 1) =
Γ(x+ 1)

Γ(x− n+ 1)
.

More details about the ∆NB distribution, its probability mass function and properties

are provided by Barndorff-Nielsen et al. (2012). For example, the ∆NB distribution has

the following first and second moments

E(R) = λ+ − λ−, Var(R) = λ+

(
1 +

λ+

ν+

)
+ λ−

(
1 +

λ−

ν−

)
.

The variables ν+, ν−, λ+ and λ− are treated typically as unknown coefficients.

An important special case of the ∆NB distribution is its the zero mean and symmetric

version, which is obtained when λ = λ+ = λ− and ν = ν+ = ν−. The probability mass

function for the corresponding random variable R is given by

f0(r;λ, ν) =

(
ν

λ+ ν

)2ν (
λ

λ+ ν

)|r|
Γ(ν + |r|)

Γ(ν)Γ(|r|+ 1)
F

(
ν + |r|, ν, |r|+ 1;

(
λ

λ+ ν

)2
)
.

In this case we have obtained a zero mean random variable R with its variance given by

Var(R) = 2λ

(
1 +

λ

ν

)
. (6)

We denote the distribution for the zero mean random variable R by ∆NB(λ, ν). This

random variable R can alternatively be considered as being generated from a compound

Poisson process, that is

R =
N∑
i=1

Mi,

where random variable N is generated by the Poisson distribution with intensity

λ × (z1 + z2), z1, z2 ∼ Ga(ν, ν), (7)
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with Ga(ν, ν) being the Gamma distribution, having its shape and scale both equal to ν,

and where indicator variable Mi is generated as

Mi =

1, with probability P (Mi = 1) = z1 / (z1 + z2),

−1, with probability P (Mi = −1) = z2 / (z1 + z2).

We will use this representation of a zero mean ∆NB variable for the developments below

and in our empirical study.

In the empirical analyses of this study, we adopt the zero inflated versions of the

∆NB distributions, because empirically we observe a clear overrepresentation of trade

by trade price changes that are equal to zero. In the analysis of Rydberg and Shephard

(2003) the zero changes are also treated explicitly since they decompose a discrete price

change into activity, direction and size. All zero changes are treated as in-activities. This

decomposition model is particularly suited for the analysis of micro market structure. In

our empirical modeling framework, we concentrate on the extraction of volatility in time

series of discrete price changes.

The number of zero price changes are especially high for the more liquid stocks. This

is due to the available volumes on best bid prices which are relatively much higher. Hence

the price impact of one trade is much lower as a result. The zero inflated version is

accomplished by the specification of the random variable R0 as

r0 =

r, with probability (1− γ)f∆NB(r;λ+, ν+, λ−, ν−),

0, with probability γ + (1− γ)f∆NB(0;λ+, ν+, λ−, ν−),

where f∆NB(r;λ+, ν+, λ−, ν−) is the probability mass function for r and 0 < γ < 1 is

treated as a fixed and unknown coefficient. We denote the zero inflated ∆NB probability

mass function with f0.

The dynamic specifications of the ∆NB distributions can be obtained by letting the

variables ν [s] and/or λ[s] be time-varying random variables, for [s] = +,−. We opt to

have a time-varying λ[s] since it is more natural for an intensity than a degrees of freedom

parameter to vary over time. The dynamic modeling of ν could also be interesting but we

leave this for future research. We restrict our analysis to the zero inflated zero mean ∆NB

distribution f0(rt;λt, ν) and we further assume that the degrees of freedom parameters for

positive and negative price changes are the same, that is λt = λ+
t = λ−t . Taking the above

considerations into account, the dynamic ∆NB model can be specified as above but with

λt = exp(ht),

where ht is specified as in equation (1) or (2). We recognize that exp(ht/2) represents
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the standard deviation of the latent variable r∗t in our ordered probit model specification

and here we consider exp(ht). However, the variance of a ∆NB random variable relies

on λ2 and is not symmetric in λ. Hence we do not model the standard deviation of a

∆NB random variable as such. Also, due to the asymmetry we require to specify λt as a

positive variable (enforced by the exponential function). The main reason for a letting λt

be time varying is to simplify the derivation of the sampling scheme. In particular, the

current specification is convenient for deriving the auxiliary mixture sampling method,

see Section 3 for details.

2.5 Dynamic Skellam model

The dynamic ∆NB model embeds the dynamic Skellam model as considered by Koopman

et al. (2017). It is obtained as the limiting case of letting ν go to infinity, that is ν →∞;

for a derivation and further details, see Appendix A.

3 Bayesian estimation procedures

Bayesian estimation procedures for the ordered normal and ordered Student’s t stochastic

volatility models are discussed by Müller and Czado (2009) and Stefanos (2015); their

procedures, with some details, are presented in Appendix C.

Here we develop a Bayesian estimation procedure for observations yt, with t = 1, . . . , T ,

coming from the dynamic ∆NB model. We provide the details of the procedure and discuss

its computational implementation. Our reference dynamic ∆NB model is given by

yt ∼ f0(yt;λt, ν), λt = exp ht,

ht = µh + st + xt, st = wtβ, xt+1 = ϕxt + ηt,

where ηt ∼ N
(
0, σ2

η

)
, for t = 1, . . . , T . The details of the model are discussed in Section

2. The variable parameters ν, µh, β, ϕ and σ2
η are static while xt is a latent variable

that is modeled as a stationary autoregressive process. The intradaily seasonal effect st

is represented by a Poirier spline; see Appendix B.

Our proposed Bayesian estimation procedure aims to estimate all static variables

jointly with the time-varying signal h1, . . . , hT for the dynamic ∆NB model. It is based

on Gibbs sampling, data augmentation and auxiliary mixture sampling methods which

are developed by Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter et al.

(2009). At each time point t, for t = 1, . . . , T , we introduce a set of latent auxiliary

variables to facilitate the derivation of conditional distributions. By introducing these

auxiliary variables we are able to specify the model as a linear state space model with

non-Gaussian observation disturbances. Moreover using an auxiliary mixture sampling
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procedure, we can even obtain conditionally an approximating linear Gaussian state space

model. In such a setting, we can exploit the highly efficient Kalman filtering and smooth-

ing procedures for the sampling of many full paths for the dynamic latent variables. These

ingredients are key for a computational feasible implementation of our estimation process.

3.1 Data augmentation: our latent auxiliary variables

We use the following auxiliary variables for the data augmentation. We define Nt as the

sum of NB+ and NB−, the gamma mixing variables zt1 and zt2. Moreover conditional

on zt1 , zt2 and the intensity λt, we can interpret Nt as a Poisson process on [0, 1] with

intensity (zt1 + zt2)λt based on the result in equation (7). We can introduce the latent

arrival time of the Nt-th jump of the Poisson process τt2 and the arrival time between the

Nt-th and Nt + 1-th jump of the process τt1 for every t = 1, . . . , T . The interarrival time

τt1 can be assumed to come from an exponential distribution with intensity (zt1 + zt2)λt

while the Ntth arrival time can be treated as the gamma distributed variable with density

function Ga(Nt, (zt1 + zt2)λt). We have

τt1 =
ξt1

(zt1 + zt2)λt
, ξt1 ∼ Exp(1),

τt2 =
ξt2

(zt1 + zt2)λt
, ξt2 ∼ Ga(Nt, 1),

where we can treat ξt1 and ξt2 as auxiliary variables. By taking the logarithm of the

equations and substituting the definition of log λt from equation (2), we obtain

− log τt1 = log(zt1 + zt2) + µh + st + xt + ξ∗t1, ξ∗t1 = − log ξt1,

− log τt2 = log(zt1 + zt2) + µh + st + xt + ξ∗t2, ξ∗t2 = − log ξt2.

These equations are linear in the state vector, which would facilitate the use of Kalman

filtering. However, the error terms ξ∗t1 and ξ∗t2 are non-normal. We can adopt solutions as

in Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter et al. (2009) where

the exponential and the negative log-gamma distributions are approximated by normal

mixture distributions. In particular, we can specify the approximations as

fξ∗(x;Nt) ≈
C(Nt)∑
i=1

ωi(Nt)ϕ (x,mi(Nt), vi(Nt)) ,

where C(Nt) is the number of mixture components at time t, for t = 1, . . . , T , ωi(Nt) is

the weight, and ϕ(x,m, v) is the normal density for variable x with mean m and variance

v. These approximations remain to depend on Nt because the log gamma distribution is

not canonical and it has different shapes for different values of Nt.
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3.2 Mixture indicators for obtaining conditional linear model

Conditionally on N , z1, z2, τ1, τ2 and C = {ctj, t = 1, . . . , T, j = 1, . . . ,min(Nt + 1, 2)} we

can write the following state space form

ỹt︸︷︷︸
min(Nt+1,2)×1

=

[
1 wt 1

1 wt 1

]
︸ ︷︷ ︸

min(Nt+1,2)×(K+2)

 µh

β

xt


︸ ︷︷ ︸
(K+2)×1

+ εt︸︷︷︸
min(Nt+1,2)×1

, εt ∼ N (0,Ht)

αt+1 =

 µh

β

xt+1


︸ ︷︷ ︸

(K+2)×1

=

 1 0 0

0 IK 0

0 0 ϕ


︸ ︷︷ ︸

(K+2)×(K+2)

 µh

β

xt


︸ ︷︷ ︸
(K+2)×1

+

 0

0

ηt


︸ ︷︷ ︸
(K+2)×1

, ηt ∼ N (0, σ2
η),

where  µh

β

x1


︸ ︷︷ ︸
(K+2)×1

∼ N


 µ0

β0

0


︸ ︷︷ ︸
(K+2)×1

,

 σ2
µ 0 0

0 σ2
βIK 0

0 0 σ2
η/(1− ϕ2)


︸ ︷︷ ︸

(K+2)×(K+2)

 ,

Ht = diag(v2
ct1

(1), v2
ct2

(Nt)) and

ỹt︸︷︷︸
min(Nt+1,2)×1

=

(
− log τt1 −mct1(1)− log(zt1 + zt2)

− log τt2 −mct2(Nt)− log(zt1 + zt2)

)
.

Using the mixture of normal approximation of ξ∗t1 and ξ∗t2, allows us to build an efficient

Gibbs sampling procedure in which we can efficiently sample the latent state paths in one

block using Kalman filtering and smoothing techniques.

3.3 Sampling of event times Nt

The remaining challenge is sampling of Nt as all the other full conditionals are standard.

We notice that conditionally on zt1 , zt2 and the intensity λt, the Nt’s are independent

over time. Using the short-hand notation v = (v1, . . . , vt) for a vector of variables for all

the time periods, we can write

p(N |γ, ν, µh, ϕ, σ2
η, s, x, z1, z2, y) =

T∏
t=1

p(Nt|γ, λt, zt1, zt2, yt).

12



For a given time index t, we can draw Nt from a discrete distribution with

p(Nt|γ, λt, zt1, zt2, yt) =
p(Nt, yt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)

=
p(yt|Nt, γ, λt, zt1, zt2)p(Nt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)

=
[
γ1{yt=0} + (1− γ)p (yt|Nt, λt, zt1, zt2)

]
× p(Nt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)

(8)

The denominator in equation (8) is a Skellam probability mass function with the intensities

λtzt1 and λtzt2. To calculate the probability p (yt|Nt, λt, zt1, zt2) in the second term in the

brackets in (8) we use equation (7), as yt conditionally on λt, zt1 and zt2 is distributed as

a marked Poisson process, with marks given by

Mi =

1, with P (Mi = 1) = zt1
zt1+zt2

−1, with P (Mi = −1) = zt2
zt1+zt2

.

This implies that we can represent yt as
Nt∑
i=0

Mi, so that

p (yt|Nt, λt, zt1, zt2) =


0 , if yt > Nt or |yt| mod 2 6= |Nt| mod 2,(

Nt
Nt+yt

2

)(
zt1

zt1 + zt2

)Nt+yt
2
(

zt2
zt1 + zt2

)Nt−yt
2

, otherwise.

Then Nt conditionally on zt1 , zt2 and λt is a realization of a Poisson process on [0, 1] with

intensity (zt1 + zt2)λt, hence the p(Nt|γ, λt, zt1, zt2) is the probability of a Poisson random

variable with intensity equal to λt(zt1 + zt2). We can draw all Nt’s in parallel by drawing

u, a vector of uniform random variables with ut ∼ U [0, 1], and setting

Nt = min

{
n : ut ≤

n∑
i=0

p(i|γ, λt, zt1, zt2, yt)

}
.

3.4 Markov chain Monte Carlo algorithm

To complete our Bayesian specification, we need to specify the prior distributions on the

model parameters, which we set as follows:

µh ∼ N (0, 10), βi ∼ N (0, 1),
ϕ+ 1

2
∼ B(20, 1.5), (9)

σ2
η ∼ IG(2.5, 0.025), γ ∼ B(1.7, 10), ν ∼ G[2:0.2:128](15, 1.5), (10)

13



for i = 1, . . . , K, where N is the normal, B is the beta, IG is the inverse gamma, and

G[2,2.2,...,128] is the gamma distribution on a grid from 2 to 128 with a resolution of 0.2.

The steps of the MCMC algorithm are outlined below, with more details provided in

Appendix D.

1. Initialize µh, ϕ, σ2
η, γ, ν, C , τ , N , z1, z2, s and x.

2. Generate ϕ, σ2
η, µh, s and x from p(ϕ, σ2

η, µh, s, x|γ, ν, C, τ,N, z1, z2, s, y).

(a) Draw ϕ, σ2
η from p(ϕ, σ2

η|γ, ν, C, τ,N, z1, z2, s, y).

(b) Draw µh, s and x from p(µh, s, x|ϕ, σ2
η, γ, ν, C, τ,N, z1, z2, s, y).

3. Generate γ from p(γ|ν, µh, ϕ, σ2
η, x, C, τ,N, z1, z2, s, y).

4. Generate C, τ,N, z1, z2, ν from p(C, τ,N, z1, z2, ν|γ, µh, ϕ, σ2
η, x, s, y).

(a) Draw ν from p(ν|γ, µh, ϕ, σ2
η, x, s, y)

(b) Draw z1, z2 from p(z1, z2|ν, γ, µh, ϕ, σ2
η, x, s, y).

(c) Draw N from p(N |z1, z2, ν, γ, µh, ϕ, σ
2
η, x, s, y).

(d) Draw τ from p(τ |N, z1, z2, ν, γ, µh, ϕ, σ
2
η, x, s, y).

(e) Draw C from p(C|τ,N, z1, z2, ν, γ, µh, ϕ, σ
2
η, x, s, y).

5. Go to 2.

The estimation of s is based on the spline specification st = wtβ in equation (3) where

K × 1 vector wt can be treated as an exogenous vector and K × 1 vector β is a contains

the unknown spline values which are treated as regression coefficients and need to be

estimated.

3.5 Simulation study

To validate our estimation procedure for the dynamic Skellam and ∆NB models we in-

dependently perform the following experiment 50 times. We simulate 20, 000 observation

from the model to be estimated and carry out the MCMC sampling based on 20, 000

draws after the burn-in of 20, 000. The true parameters are set as µ = −1.7, ϕ = 0.97,

ση = 0.02, γ = 0.1 and ν = 10, which are close to those estimated from real data in

our empirical study of Section 4. A single experiment takes approximately 5 hours on a

2.90GHz CPU.

Table 1 presents the posterior means, standard deviations and the 95% credible in-

tervals, averaged over 50 Monte Carlo replications. It also shows the mean inefficiency

factors and their standard deviations across the experiments. Figure 1 illustrates the

14



Parameter True Mean Std 95% range Mean IF Std IF

µ -1.7000 -1.7180 (0.0457) [-1.8083,-1.6287] 177.2659 (60.5684)

ϕ 0.9700 0.9701 (0.0041) [0.9614,0.9774] 354.3270 (101.5417)

σ2
η 0.0200 0.0200 (0.0032) [0.0145,0.0270] 552.3604 (153.5302)

γ 0.1000 0.0901 (0.0182) [0.0526,0.1242] 312.7835 (116.7197)

β1 1.0652 1.0652 (0.0948) [0.8790,1.2511] 20.3728 (3.7064)

β2 -0.8538 -0.8538 (0.0448) [-0.9420,-0.7662] 22.2124 (4.5653)

ν 10.0000 9.7185 (2.3329) [5.8333,14.8933] 135.1976 (51.5453)

Table 1: Posterior means, standard deviations (in parentheses), the 2.5%–97.5% quantile ranges (in brackets) and the
mean inefficiency factors (IF) and their standard deviations averaged over MC 50 replications, for M = 20, 000 posterior
draws after a burn-in of 20, 000 for T = 20, 000 observations generated from the ∆NB models.

estimation results on a subsample of the initial 15 Monte Carlo replications, while Figure

2 depicts the posterior densities of the parameters from a single simulation. These results

indicate that in our stylized setting, the algorithm can estimate the parameters accurately

as the true values are within the highest posterior density regions based on the estimates.

The posterior distributions for the autoregressive coefficient ϕ and for the state variance

σ2
η seem to be the most challenging to estimate efficiently, as their inefficiency factors are

high. Nevertheless, the accuracy of their estimates is satisfactory, with the true values on

average being within the 95% credible intervals.

4 Empirical study

In this section we present and discuss the empirical findings from our analyses concerning

tick by tick price changes for three different stocks traded at the NYSE, for two different

periods. In particular, we analyse the bid prices that correspond to transactions in order

to account for bid-ask bounds. We consider two model classes and two models for each

class. The first set consists of the ordered probit models with normal and Student’s

t stochastic volatility. The second set includes the dynamic Skellam and dynamic ∆NB

models. The analyses include in-sample and out-of-sample marginal likelihood comparison

of the models. Our aims of the empirical study is twofold. First, the usefulness of

the ∆NB model on a challenging dataset is investigated. In particular, we validate our

estimation procedure and reveal possible shortcomings in the estimation of the parameters

in the ∆NB model. Second, we intend to find out what the differences are when the

considered models are based on heavy-tailed distributions (ordered t and ∆NB models)

or not (ordered normal and dynamic Skellam models). Also, we compare the different

model classes: ordered model versus integer distribution model.
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Figure 1: Bar plots of the posterior draws in a subsample of last 15 experiments from our Monte Carlo study.

4.1 Data

We have access to the Thomson Reuters Sirca dataset that contains all trades and quotes

with millisecond time stamps for all stocks listed at NYSE. We have collected the data

for International Business Machines (IBM) and Coca-Cola (KO). These stocks differ in

liquidity and in price magnitude. In our study we concentrate on two weeks of price

changes: the first week of October 2008 and the last week of April 2010. These weeks

exhibit different market sentiments and volatility characteristics. The month of October

2008 is in the middle of the 2008 financial crises with record high volatilities and some

markets experienced their worst weeks in October 2008 since 1929. The month of April

2010 is a much calmer month with low volatilities. To avoid some of the issues related

to microstructure noise in high-frequency price changes, including bid-ask bounces, we

analyse the bid prices of transactions.

The cleaning process of the data consists of a number of filtering steps that are similar
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Figure 2: Posterior distributions of the parameters from a dynamic ∆ NB model based on 20000 observations and 20000
iterations after a burn-in of 20000. Each picture shows the histogram of the posterior draws the kernel density estimate
of the posterior distribution, the HPD region and the posterior mean. The true parameters are µ = −1.7, ϕ = 0.97 ,
σ2
η = 0.02, γ = 0.1 and ν = 10.

to the procedures described in Boudt et al. (2012), Barndorff-Nielsen et al. (2008) and

Brownlees and Gallo (2006). First, we remove all quotes-only entries which is a large

portion of the data. By excluding the quotes we lose around 70− 90% of the data. In the

next step, we delete the trades with missing or zero prices or volumes. We also restrict

our analysis to the trading period from 09:30 to 16:00. The fourth step is to aggregate

the trades which have the same time stamp. We take the trades with the last sequence

number when there are multiple trades at the same millisecond. We regard the last bid

price as the bid price that we can observe with a millisecond resolution. Finally, we treat

outliers by following the rules as suggested by Barndorff-Nielsen et al. (2008).

Table 2 presents the descriptive statistics for our resulting bid price data from the 3rd

to 10th October 2008 and from the 23rd to 30th April 2010, respectively. A more detailed

account of the cleaning process can be found in Tables 5 and 6 in Appendix E. We treat

the periods from the 3rd to 9th October 2008 and from the 23rd to 29th April 2010 as the

in-sample periods. The two out-of-sample periods are 10th October 2008 and 30th April

2010. Figure 3 presents the empirical distributions of the tick by tick log returns as well

as the tick returns and the fitted Skellam probability mass function (pmf). For the two

stocks considered, IBM and KO, there is a nontrivial number of tick returns higher than

10 in absolute terms. Moreover, we find that the Skellam distribution is too lightly tailed

to correctly capture the fat tails of the bid price data.
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Table 2: Descriptive statistics of the bid prices for IBM and KO from 3rd to 10th October 2008 (top) and from 23rd
to 30th April 2010 (bottom). The column “In” displays the statistics on the in-sample period from 3rd to 9th October
2008, while the column “Out” displays the descriptives for the out-of-sample period 10th October. We show the number of
observations (Num.obs), average price (Avg. price), mean price change (Mean), standard deviation of price changes (Std),
minimum and max integer price changes (Min,Max) as well as the percentage of zero price changes (% 0), the percentage
of -1, 1 price changes (%±1) and the percentage of price changes between 2 and 10 in absolute terms (% ± 2–10) in the
sample.

October 2008
IBM KO

In Out In Out

Num. obs 68002 20800 70356 25036
Avg. price 96.7955 87.5832 49.2031 41.8750
Mean -0.0176 -0.0013 -0.0103 0.0046
Std 5.7768 6.3142 1.8334 2.6755
Min -181 -89 -44 -47
Max 213 169 51 65
% 0 50.1735 48.2981 53.4937 48.2385
% ± 1 8.7233 8.0673 22.0081 17.9022
% ± 2–10 34.4931 34.6346 24.2481 33.0564

April 2010
IBM KO

In Out In Out

Num. obs 43606 8587 34469 6073
Avg. price 130.1758 129.5754 53.6275 53.7317
Mean 0.0014 -0.0181 -0.0029 -0.0061
Std 1.2883 1.3367 0.5971 0.6691
Min -21 -18 -9 -4
Max 36 10 8 5
% 0 61.6956 60.2888 75.2734 69.3891
% ± 1 23.5472 22.6505 22.2316 26.8730
% ± 2–10 14.6883 17.0374 2.4950 3.7379
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(a) Tick by tick log returns.
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(b) Tick returns and the fitted Skellam pmf.

Figure 3: Empirical distributions of bid prices for IBM and KO stocks, during the October 2008 period.
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4.2 Estimation results

We start our analyses with the dynamic Skellam and ∆NB models for all considered

stocks in the periods from 3rd to 9th October 2008 and from 23rd to 29th April 2010. We

adopt the same prior specifications as in the simulation study and given by (9)–(10). In

the MCMC procedure, we draw 40, 000 samples from the Markov chain and disregard the

first 20, 000 draws as burn-in samples. The results of parameter estimation for the 2008

data period are reported in Tables 3a–3b, while for the 2010 period in Tables 4a–4b.

The unconditional mean volatility differ across stocks and time periods. The uncondi-

tional mean of the latent state is higher for stocks with higher price and it is higher in the

more volatile periods in 2008. These results are consistent with intuition but we should

not take strong conclusions from these findings. For example, we cannot compare the

estimated means between models as they have somewhat different interpretations in dif-

ferent model specifications. The estimated AR(1) coefficients for the different series range

from 0.94 to 0.99, except for the the Skellam and ∆NB models applied to the IBM data

in the 2008 period, in which case the posterior means were 0.51 and 0.65, respectively.

This finding suggests generally persistent dynamic volatility behavior within a trading

day, even after accounting for the intradaily seasonal pattern in volatility. However, by

comparing the two different periods, we find that the transient volatility is less persistent

in the more volatile crises period. We only included the zero inflation specification for the

∆NB and dynamic Skellam distributions when additional flexibility appears to be needed

in the observation density. This flexibility has been required for higher price stocks and

during the more volatile periods. The estimates for the zero inflation parameter γ ranges

from 0.1 to 0.3. The degrees of freedom parameter ν for the ∆NB distribution is estimated

as a higher value during the more quiet 2010 period which suggests that the distribution

of the tick by tick price change is closer to a thin tailed distribution during such periods.

In addition, we have found that the estimated degrees of freedom parameter is a lower

value for stocks with a higher average price.

From a more technical perspective, our study has revealed that the parameters of our

∆NB modeling framework mix relatively slowly. This may indicate that our procedure

can be rather inefficient. However, it turns out that the troublesome parameters are in all

cases the persistence parameter of the volatility process, ϕ, and the volatility of volatility,

ση. It is well established and documented that these coefficients are not easy to estimate

efficiently as they have not a direct impact on the observations; see Kim et al. (1998) and

Stroud and Johannes (2014). Furthermore, our empirical study has some challenging nu-

merical problems. In the 2008 period we analyse almost 70, 000 observations jointly while

the time series in the 2010 period is shorter but still 40, 000 observations. Such long time

series will typically lead to slow mixing in a Bayesian MCMC estimation procedures due

to highly informative full conditional distributions. Bayesian asymptotic results guarantee
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Table 3: Posterior means, standard deviations (Std, in parentheses), the 2.5%–97.5% quantile ranges (95%, in brackets)
and the inefficiency factors (IF) for M = 20, 000 posterior draws after a burn-in of 20, 000.
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Table 4: Posterior means, standard deviations (Std, in parentheses), the 2.5%–97.5% quantile ranges (95%, in brackets)
and the inefficiency factors (IF) for M = 20, 000 posterior draws after a burn-in of 20, 000.
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that long series are more informative about the parameters. Hence we can estimate these

parameters accurately. Our Monte Carlo study in the previous section has shown that

our algorithm is successful in capturing the true parameters. However, with long series it

can be hard to construct efficient proposal distributions. In other words, it can be hard to

choose “plausible” parameters in the random walk MH algorithm. We therefore observe

low acceptance rates and thus high inefficiency factors. We have also anticipated that pa-

rameter estimation for the dynamic Skellam and ∆NB models is less numerically efficient

and overall more challenging when compared to the estimation for ordered normal and

ordered t models. The estimation for discrete distribution models requires more auxiliary

variables and the analysis is based on additional conditional statements.
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Volatility decompostion of KO tick returns from 23rd to 29th April 2010

Figure 4: Decomposition of log volatility in the dynamic ∆NB model for KO from 23rd to 29th April 2010.

On the basis of the output of our MCMC estimation procedure, we obtain the estimates

for the latent volatility variable ht but we can also decompose these estimates into the

corresponding components of ht, these are µh, st and xt; see equation (2). Figure 4 presents

the intraday, tick by tick, Coca Cola bid price changes and its estimated components xt

and st for the log volatility ht in the ∆NB model, from 23rd to 29th April 2010. The

intraday seasonality matches with the typical features of tick by tick data and reflects

the market mechanism; see also the discussion in Andersen (2000). The volatility is the

highest at the beginning of the trading day which is the result of the overnight effect and

a different trading mechanism at the pre-open call auction during the first half hour of

22



trading (from 9:00 to 9:30). This burst of information accumulated during the overnight

period leads to much higher volatility at the opening of the market. This effect is captured

by the estimated initial value of the spline function β1. The overnight effect receives strong

support from the data given that the posterior means are far from zero. We further find

that the regular trading takes place continuously throughout the day while it becomes

more intense shortly before the closing of the market. The smoothness of the intraday

seasonal pattern estimates is enforced through the spline specification. Apart from the

pronounced intraday seasonality, we observe many volatility changes during a trading day.

Some of these volatility changes may have been sparked by news announcements while

others may have occurred as the result of the trading process. Finally, the parameter

values underlying the signal extraction of ht = µh + st + xt are estimated jointly for five

consecutive days. Hence it is implied that the overnight effect is the same for each day

in our analysis. In Appendix F we compare our estimates of ht = µh + st + xt with

those based on parameter estimates obtained for each day separately. Although some

differences are clearly visible, overall the extracted signals of ht are very similar.

4.3 In-sample comparison

It is widely established in Bayesian studies that the computation of sequential Bayes

factors (BF) is infeasible in this framework as it requires sequential parameter estimation.

The sequential estimation of the parameters in our model is computationally prohibitive

given the very high time dimensions. To provide some comparative assessments of the

four models that we have considered in our study, we follow Stroud and Johannes (2014)

and calculate Bayesian Information Criteria (BIC) for model M as

BICT (M) = −2
T∑
t=1

log p(yt|θ̂,M) + di log T,

where p(yt|θ,M) can be calculated by means of a particle filter and θ̂ is the posterior mean

of the parameters. The implementation of the particle filter for all considered models is

rather straightforward given the model details provided in Section 2. The BIC gives an

asymptotic approximation to the BF by

BICT (Mi)−BICT (Mj) ≈ −2 logBFi,j.

We will use this approximation for our sequential model comparisons.

Figure 5a and Figure 5b present the BICs for the periods from the 23rd to 29th

October 2008 and from the 3rd to 9th April 2010, respectively. For the 2008 period,

the IBM stock does not appear to favour the integer-based models and its behavior is

captured best with the ordered t model. However, the opposite is the case for KO: both
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the Skellam and the ∆NB model outperform the ordered models convincingly. In the

2010 period, the IBM stock slightly favours the ∆NB model compared to the ordered

t model. In this case the Skellam model does not seem to be able to correctly capture

the features of the data. For KO in the same period, the ordered t model provides the

best fit to the data, with both the Skellam model and the ∆NB model not performing so

well. Furthermore, we may conclude from the BIC results that the ordered t and ∆NB

model tends to be favoured when large jumps in volatility have occurred. Such large

price changes may lead to a prolonged period of high volatility which suggests the need

of the ∆NB model. These findings are consistent with the intuition that for time varying

volatility models, the identification of parameters determining the tail behaviour requires

extreme or excessive observations in combination with low volatility.
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(a) From 3rd to 9th October 2008.
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(b) From 23rd to 29th April 2010.

Figure 5: In-sample analysis: sequential BF approximations based on BIC, relative to the ordered normal model, for IBM
(left) and KO (right) on two periods.

4.4 Out-of-sample comparisons

The performances of the dynamic Skellam and ∆NB models can also be compared in

terms of predictive likelihoods. The one-step-ahead predictive likelihood for model M is

p(yt+1|y1:t,M) =∫ ∫
p(yt+1|y1:t, xt+1, θ,M)p(xt+1, θ|y1:t,M)dxt+1dθ =∫ ∫
p(yt+1|y1:t, xt+1, θ,M)p(xt+1|θ, y1:t,M)p(θ|y1:t,M)dxt+1dθ.
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Generally, the h-step-ahead predictive likelihood can be decomposed to the sum of one-

step-ahead predictive likelihoods via

p(yt+1:t+h|y1:t,M) =
h∏
i=1

p(yt+i|y1:t+i−1,M)

=
h∏
i=1

∫ ∫
p(yt+i|y1:t+i−1, xt+i, θ,M)

× p(xt+i|θ, y1:t+i−1,M)p(θ|y1:t+i−1,M)dxt+idθ.

These results suggest that we require the computation of p(θ|y1:t+i−1,m), for i = 1, 2, . . .,

that is the posterior of the parameters using sequentially increasing data samples. It

requires the MCMC procedure to be repeated as many times as we have number of

out-of-sample observations. In our application, for each stock and each model, it implies

several thousands of MCMC replications for a predictive analysis of a single out-of-sample

day. This exercise is computationally not practical or even infeasible. However, we may

be able to rely on the approximation

p(yt+1:t+h|y1:t,M) ≈
h∏
i=1

∫ ∫
p(yt+i|y1:t+i−1, xt+i, θ,M)

× p(xt+i|θ, y1:t+i−1,M)p(θ|y1:t,M)dxt+idθ.

This approximation is based on the notion that, after observing a considerable amount

of data, that is for t sufficiently large, the posterior distribution of the static parameters

should not change much and hence p(θ|y1:t+i−1,M) ≈ p(θ|y1:t,M).

Based on this approximation, we carry out the following exercise. From our MCMC

output we obtain a sample of posterior distributions based on the in-sample observations.

For each parameter draw from the posterior distribution we estimate the likelihood using

the particle filter for the out-of-sample period.

Figures 6a and Figure 6b present the out-of-sample sequential predictive Bayes factors

approximations for the 10th October 2008 and 30th April 2010, respectively. Similarly as

in the in-sample 2008 period, also on the 10th October 2008, the ordered t model performs

best for the IBM stock, while both integer distribution models perform well for the KO

stock. On the 30th April 2010 the ∆NB model performs the best for IBM while the

Skellam model is being the worst. It suggests that the IBM stock requires a heavy-tailed

distribution, as in the ∆NB and ordered t model. For KO in the same period, both the

dynamic Skellam and ∆NB models beat the ordered models. Here the Skellam model

outperforms slightly the ∆NB model during most of the trading day.
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(a) On 10th October 2008.
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(b) On 30th April 2010.

Figure 6: Out-of-sample analysis: sequential predictive Bayes factor approximations, relative to the ordered normal model,
for IBM (left) and KO (right) for the two periods.

5 Conclusions

We have reviewed and introduced dynamic models for high-frequency integer price changes.

In particular, we have introduced the dynamic negative binomial difference model, referred

to as the ∆NB model. We have developed a Markov chain Monte Carlo procedure (based

on Gibbs sampling) for the Bayesian estimation of parameters in the dynamic Skellam

and ∆NB models. Furthermore, we have demonstrated our estimation procedures for

simulated data and for real data consisting of tick by tick transaction bid prices from

NYSE stocks. We have compared the in-sample and out-of-sample performances of two

classes of models, the ordered probit models and models based on integer distributions.

Our modeling framework opens several directions for future research. For instance,

the ∆NB model has been defined by a time varying specification for the λ parameter in

the ∆NB distribution, while the second parameter ν is kept constant over time. It can

be of interest to investigate the impact of reversing this specification by considering a

dynamic model for ν.

It would be also of interest to allow for a ∆NB distribution with a non-zero mean.

This would allow to base our analysis on the non-centered parametrization of our state

space model and hence to adopt the ancillarity-sufficiency interweaving strategy (ASIS)

of Kastner and Frühwirth-Schnatter (2014) for the improvement of mixing the proposed

sampler. This direction of improvement of the efficiency of our proposed sampler can also

be considered for future research.
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APPENDICES

A Negative Binomial distribution

The probability mass function (pmf) of the NB distribution is given by

f(k; ν, p) =
Γ(ν + k)

Γ(ν)Γ(k + 1)
pk(1− p)ν .

Its different parametrization can be obtained by denoting its mean by λ = ν p
1−p , which

implies p = λ
λ+ν

. We refer to this parametrization as NB(λ, ν). Then the pmf takes the

following form

f(k;λ, ν) =
Γ(ν + k)

Γ(ν)Γ(k + 1)

(
λ

ν + λ

)k (
ν

ν + λ

)ν
and the variance is equal to λ

(
1 + λ

ν

)
. Then the dispersion index, or the variance-to-mean

ratio, is equal to
(
1 + λ

ν

)
> 1, which shows that the NB distribution is overdispersed. This

means that there are more intervals with low counts and more intervals with high counts,

compared to the Poisson distribution. The latter is nested in the NB distribution as the

limiting case when ν →∞.

Alternatively, the NB distribution can be written as a Poisson-Gamma mixture. Let

Y follow a Poisson distribution with the mean λU , where the heterogeneity parameter U

has the unit mean and is Gamma-distributed, U ∼ Ga(ν, ν), with the density of Ga(α, β)

given by f(x;α, β) = βαxα−1e−βx

Γ(α)
. Then

f(k;λ, ν) =

∞∫
0

fPoisson(k;λu)fGamma(u; ν, ν)du

=

∞∫
0

(λu)ke−λu

k!

ννuνe−νu

Γ(ν)
du

=
λkνν

k!Γ(ν)

∞∫
0

e−(λ+ν)uuk+ν−1du.
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Substituting (λ+ ν)u = s, we get

=
λkνν

k!Γ(ν)

∞∫
0

e−s
sk+ν−1

(λ+ ν)k+ν−1

1

(λ+ ν)
ds

=
λkνν

k!Γ(ν)

1

(λ+ ν)k+ν

∞∫
0

e−ssk+ν−1ds

=
λkνν

k!Γ(ν)

Γ(k + ν)

(λ+ ν)k+ν

=
Γ(ν + k)

Γ(ν)Γ(k + 1)

(
λ

ν + λ

)k (
ν

ν + λ

)ν
,

which shows that Y ∼ NB(λ, ν).
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B Daily volatility patterns

We want to approximate the function f : R → R with a continuous function which is

built up from piecewise polynomials of degree at most three. Let the set ∆ = {k0, . . . , kK}
denote the set of of knots kj j = 0, . . . , K. ∆ is some times called a mesh on [k0, kK ]. Let

y = {y0, . . . , yK} where yj = f(xj). We denote a cubic spline on ∆ interpolating to y as

S∆(x). S∆(x) has to satisfy the following conditions.

1. S∆(x) ∈ C2 [k0, kK ].

2. S∆(x) coincides with a polynomial of degree at most three on the intervals [kj−1, kj]

for j = 0, . . . , K.

3. S∆(x) = yj for j = 0, . . . , K.
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Using condition 2 we know that the S
′′
∆(x) is a linear function on [kj−1, kj], which means

that we can write S
′′
∆(x) as

S
′′

∆(x) =

[
kj − x
hj

]
Mj−1 +

[
x− kj−1

hj

]
Mj for x ∈ [kj−1, kj] ,

where Mj = S
′′
∆(kj) and hj = kj − kj−1. Integrating S

′′
∆(x) and solving the integrating for

the two integrating constants (using S∆(x) = yj) Poirier (1973) shows that we get

S
′

∆(x) =

[
hj
6
− (kj − x)2

2hj

]
Mj−1+

[
(x− kj−1)2

2hj
− hj

6

]
Mj+

yj − yj−1

hj
, for x ∈ [kj−1, kj]

and

S∆(x) =
kj − x

6hj

[
(kj − x)2 − h2

j

]
Mj−1 +

x− kj−1

6hj

[
(x− kj−1)2 − h2

j

]
Mj

+

[
kj − x
hj

]
yj−1 +

[
x− kj−1

hj

]
yj, for x ∈ [kj−1, kj] (A1)

In the above expressions only Mj for j = 0, . . . , K are unknown. We can use the continuity

restrictions which enforce continuity at the knots by requiring that the derivatives are

equal at the knots kj for j = 1, . . . , K − 1, so that

S
′

∆(k−j ) = hjMj−1/6 + hjMj/3 + (yj − yj−1)/hj,

S
′

∆(k+
j ) = −hj+1Mj/3− hj+1Mj+1/6 + (yj+1 − yj)/hj+1,

which yields K − 1 conditions

(1− λj)Mj−1 + 2Mj + λjMj+1 =
6yj−1

hj(hj + hj+1)
− 6yj
hjhj+1

+
6yj+1

hj+1(hj + hj+1)
,

where

λj =
hj+1

hj + hj+1

.

Using two end conditions we have K + 1 unknowns and K + 1 equations and we can

solve the linear equation system for Mj. Using the M0 = π0M1 and MK = πKMK−1 end
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conditions we can write

Λ =



2 -2 π0 0 . . . 0 0 0

1-λ1 2 λ1 . . . 0 0 0

0 1-λ2 2 . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . 2 λK−2 0

0 0 0 . . . 1-λK−1 2 λK−1

0 0 0 . . . 0 -2 πK 2


,

Θ =



0 0 0 . . . 0 0 0
6

h1(h1+h2)
- 6
h1h2

6
h2(h1+h2)

. . . 0 0 0

0 6
h2(h2+h3)

- 6
h2h3

. . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . - 6
hK−2hK−1

6
hK−1(hK−2+hK−1)

0

0 0 0 . . . 6
hK−1(hK−1+hK)

- 6
hK−1hK

6
hK(hK−1+hK)

0 0 0 . . . 0 0 0


m = (M0,M1, . . . ,MK−1,MK)′ and y = (y0, y1, . . . , yK−1, yK)′. The linear equation sys-

tem is given by

Λm = θy (A2)

and the solution is

m = Λ−1Θy (A3)

Using this result and equation (A1) we can calculate

S∆(ξ) = [S∆(ξ1), S∆(ξ2), . . . , S∆(ξN−1), S∆(ξN)]′.

Let us denote by P the N × (K + 1) matrix in which the ith row i = 1, . . . , N1, given

that kj−1 ≤ ξ ≤ kj, can be written as

pi︸︷︷︸
1×(K+1)

=

0, . . . , 0︸ ︷︷ ︸
first j − 2

,
kj − ξi

6hj

[
(kj − ξi)2 − h2

j

]
,
ξi − kj−1

6hj

[
(ξi − kj−1)2 − h2

j

]
, 0, . . . , 0︸ ︷︷ ︸

last K + 1− j

 .
Moreover, denote by Q the N × (K + 1) matrix in which the ith row i = 1, . . . , N , given
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that kj−1 ≤ ξ ≤ kj, can be written as

qi︸︷︷︸
1×(K+1)

=

0, . . . , 0︸ ︷︷ ︸
first j − 2

,
kj − ξi
hj

,
ξi − kj−1

hj
, 0, . . . , 0︸ ︷︷ ︸

last K + 1− j

 .
Now using (A1) and (A3), we get

S∆(ξ) = Pm+Qy = PΛ−1Θy +Qy = (PΛ−1Θ +Q)y = W︸︷︷︸
N×(K+1)

y︸︷︷︸
(K+1)×1

,

where

W = PΛ−1Θ +Q.

In practical situations we might only know the knots but we do not know the spline

values, which we observe with errors. In this case we have

s = S∆(ξ) + ε = Wy + ε,

where s = (s1, s2, . . . , sN−1, sN)′ and ε = (ε1, ε2, . . . , εN−1, εN)′, with

E(ε) = 0 and E(εε′) = σ2I.

Notice that after fixing the knots we only have to estimate the value of the spline at the

knots and this fully determines the shape of the spline. We can do this by a simple OLS

regression

ŷ = (W>W )−1W>s.

For the identification reasons we want∑
j:unique ξj

S∆(ξj) =
∑

j:unique ξj

wjy = w∗y = 0,

where wi is the ith row of W and

w∗ =
∑

j:unique ξj

wj.

To this end, a restriction can be enforced on one of the elements of y. This ensures that

E(st) = 0, so that st and µh can be identified. If we drop yK we can substitute

yK = −
K−1∑
i=0

(w∗i /w
∗
K)yi,
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where w∗i is the ith element of w∗. Substituting this into

∑
j:unique ξj

S∆(ξj) =
∑

j:unique ξj

wjy =
∑

j:unique ξj

K∑
i=0

wjiyi =
∑

j:unique ξj

K−1∑
i=0

wjiyi − wjK
K−1∑
i=0

(w∗i /w
∗
K)yi

=
∑

j:unique ξj

K−1∑
i=0

(wji − wjKw∗i /w∗K)yi =
K−1∑
i=0

∑
j:unique ξj

(wji − wjKw∗i /w∗K)yi

=
K−1∑
i=0

(w∗i − w∗Kw∗i /w∗K)yi =
K−1∑
i=0

(w∗i − w∗i )yi = 0.

Lets partition W in the following way

W︸︷︷︸
N×(K+1)

= [W−K︸ ︷︷ ︸
N×K

: WK︸︷︷︸
N×1

]

where W−K is equal to the first K columns of W and WK is the Kth column of W .

Moreover

w∗︸︷︷︸
1×(K+1)

= [w∗−K︸︷︷︸
1×K

: w∗K︸︷︷︸
1×1

]

Finally, we can define

W̃︸︷︷︸
N×K

= W−K︸ ︷︷ ︸
N×K

− 1

w∗K
WK︸︷︷︸
N×1

w∗−K︸︷︷︸
1×K

,

so that we obtain

s = S∆(ξ) + ε = W̃︸︷︷︸
N×K

ỹ︸︷︷︸
K×1

+ε.

C MCMC estimation of the ordered t-SV model

In this section, the t element vectors (v1, . . . , vt) containing time dependent variables for

all time time periods, are denoted by v, the variable without a subscript.

C.1 Generating the parameters x, µh, ϕ, σ2
η (Step 2)

Notice that conditional on C = {ct, t = 1, . . . , T} , r∗t we have

2 log r∗t = µ+ st + xt + log λt +mct + εt, εt ∼ N (0, v2
ct)
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which implies the following state space form

ỹt =
[

1 wt 1
]

︸ ︷︷ ︸
1×(K+2)

 µ

β

xt


︸ ︷︷ ︸
(K+2)×1

+εt, εt ∼ N (0, v2
ct), (A4)

αt+1 =

 µ

β

xt+1


︸ ︷︷ ︸

(K+2)×1

=

 1 0 0

0 IK 0

0 0 ϕ


︸ ︷︷ ︸

(K+2)×(K+2)

 µ

β

xt


︸ ︷︷ ︸
(K+2)×1

+

 0

0

ηt


︸ ︷︷ ︸
(K+2)×1

, ηt ∼ N (0, σ2
η), (A5)

where  µ

β

x1


︸ ︷︷ ︸
(K+2)×1

∼ N


 µ0

β0

0


︸ ︷︷ ︸
(K+2)×1

,

 σ2
µ 0 0

0 σ2
βIK 0

0 0 σ2
η/(1− ϕ2)


︸ ︷︷ ︸

(K+2)×(K+2)

 (A6)

and

ỹt = 2 log r∗t − log λt −mrt1 . (A7)

First we draw ϕ, σ2
η from p(ϕ, σ2

η|γ, ν, C, τ,N, z1, z2, s, y). Notice that

p(ϕ, σ2
η|γ, ν, C, τ,N, z1, z2, s, y) = p(ϕ, σ2

η|ỹt, C,N) ∝ p(ỹt|ϕ, σ2
η, C,N)p(ϕ)p(σ2

η),

where ỹt is defined above in equation (A11). The likelihood can be evaluated using

standard Kalman filtering and prediction error decomposition (see e.g, Durbin and Koop-

man, 2012) taking advantage of fact that conditional on the auxiliary variables we have

a linear Gaussian state space form given by equation (A8),(A9), (A10) and (A11). We

draw from the posterior using an adaptive random walk Metropolis-Hastings step pro-

posed by Roberts and Rosenthal (2009). Conditional on ϕ, σ2
η we draw µh, s and x from

p(µh, s, x|ϕ, σ2
η, γ, ν, C, τ,N, z1, z2, s, y), which is done simulating from the smoothed state

density of the linear Gaussian state space model given by (A4),(A5), (A6) and (A7). We

use the simulation smoother proposed by Durbin and Koopman (2002).

C.2 Generating γ (Step 3)

The conditional distribution for γ simplifies as follows

p(γ|ν, µ, ϕ, σ2
η, x, s, C, y, r

∗
t ) = p(γ|ν, h, y),
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because given ν, h and y, γ does not depend on C,ϕ, σ2
η, r
∗
t . We further have that

p(γ|ν, h, y) ∝ p(y|γ, ν, h)p(γ|ν, h) = p(y|γ, ν, h)p(γ),

as γ is independent from ν and h. Finally,

p(y|γ, ν, h)p(γ) =
T∏
t=1

{
γ1{yt=0} + (1− γ)

×
[
T
(
yt + 0.5

exp(ht/2)
, ν

)
− T

(
yt − 0.5

exp(ht/2)
, ν

)]}γa−1(1− γ)b−1

B(a, b)

∝
T∏
t=1

{
γa(1− γ)b−11{yt=0} + γa−1(1− γ)b

×
[
T
(
yt + 0.5

exp(ht/2)
, ν

)
− T

(
yt − 0.5

exp(ht/2)
, ν

)]}
,

where T (·, ν) is the Student’s t density function with mean zero scale one and degree

of freedom parameter ν. We sample from this posterior using an adaptive random walk

Metropolis-Hastings sampler by Roberts and Rosenthal (2009).

C.3 Generating r∗

First, notice that the conditional distribution for r∗ can be simplified as follows

p(r∗|γ, ν, µ, ϕ, σ2
η, x, s, C, λ, y) = p(r∗|γ, h, λ, y) =

T∏
t=1

p(r∗t |γ, ht, λt, yt).

Then, by the law of total probability we have

p(r∗t |γ, ν, ht, yt) =p(r∗t |γ, ν, ht, λt, yt, zero)p(zero|γ, ht, λt, yt)

+ p(r∗t |γ, ht, λt, yt, non-zero)p(non-zero|γ, ht, λt, yt),

where p(r∗t |γ, ht, λt, yt, zero) is a normal density with zero mean and variance λt exp(ht)

truncated to the interval [yt − 0.5, yt + 0.5]. If yt = 0, then

p(zero|γ, ht, yt = 0) =
p(zero, γ, ht, yt = 0)

p(γ, ht, yt = 0)
=
p(yt = 0|zero, γ, ht)p(zero|γ, ht)

p(yt = 0|γ, ht)

=
1× γ

γ + (1− γ)
[
Φ
(

0.5√
λt exp(ht/2)

)
− Φ

(
−0.5√

λt exp(ht/2)
,
)] .
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If yt = k 6= 0, then

p(zero|γ, ht, yt = k) =
p(zero, γ, ht, yt = k)

p(γ, ht, yt = k)

=
p(yt = k|zero, γ, ht)p(zero|γ, ht)

p(yt = k|γ, ht)
= 0.

Moreover p(non-zero|γ, ht, yt) = 1− p(zero|γ, ht, yt).

C.4 Generating ν and λ

To sample ν and λ we use the method by Stroud and Johannes (2014). We can decompose

the posterior density as

p(ν, λ|γ, ϕ, σ2
η, h, C, y, r

∗) = p(ν, λ|h, r∗) = p(λ|ν, h, r∗)p(ν|h, r∗).

Note that we have to following mixture representation

r∗t = exp(ht/2)
√
λtεt εt ∼ N (0, 1) λt ∼ IG(ν/2, ν/2),

which implies

p(ν|h, r∗) ∝
T∏
t=1

p

(
r∗t

exp(ht/2)

∣∣∣∣ht, ν) p(ν),

where

p

(
r∗t

exp(ht/2)

∣∣∣∣ht, ν) ∼ tν(0, 1).

Combined with the prior ν ∼ DU(2, 128), this leads to the following posterior

p(ν|h, r∗) ∝
T∏
t=1

p

(
r∗t

exp(ht/2)

∣∣∣∣ht, ν) =
T∏
t=1

gν∗

(
r∗t

exp(ht/2)

)
=

T∏
t=1

gν∗ (wt) ,

where wt = r∗t / exp(ht/2).

To avoid the computationally intense evaluation of these probabilities we can use a

Metropolis-Hastings update. We can draw the proposal ν∗ from the neighborhood of the

current value ν(i) using a discrete uniform distribution ν∗ ∼ DU(ν(i) − δ, ν(i) + δ) and

accept with probability

min

{
1,

∏T
t=1 gν∗(yt)∏T
t=1 gν(i)(yt)

}
,

where δ is chosen such that the acceptance rate is reasonable.

38



Finally, we have

p(λ|ν, h, r∗) =
T∏
t=1

p(λt|ν, ht, r∗t ) ∝
T∏
t=1

p(r∗t |λt, ν, ht)p(λt|ν),

where

p

(
r∗t

exp(ht/2)

∣∣∣∣λt, ν, ht) ∼ N (0, λt),

p(λt|ν) ∼ IG(ν/2, ν/2),

p(λt|ν, ht, r∗t ) ∼ IG

ν + 1

2
,
ν +

(
r∗t

exp(ht/2)

)2

2

 .

D MCMC estimation of the dynamic ∆NB model

In this section, the t element vectors (v1, . . . , vt) containing time dependent variables for

all time time periods, are denoted by v, the variable without a subscript. We discuss the

algorithmic details for the ∆NB model and we note that these also apply to the dynamic

Skellam model, except Step 4a (generating ν).

D.1 Generating x, s, µh, ϕ, σ2
η (Step 2)

Notice that conditional on C = {ctj, t = 1, . . . , T, j = 1, . . . ,min(Nt + 1, 2)} , τ , N ,γ and

s we have

− log τt1 = log(zt1 + zt2) + µh + st + xt +mct1(1) + εt1, εt1 ∼ N (0, v2
ct1

(1))

and

− log τt2 = log(zt1 + zt2) + µh + st + xt +mct2(Nt) + εt2, εt2 ∼ N (0, v2
ct2

(Nt)),
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which implies the following state space form

ỹt︸︷︷︸
min(Nt+1,2)×1

=

[
1 wt 1

1 wt 1

]
︸ ︷︷ ︸

min(Nt+1,2)×(K+2)

 µh

β

xt


︸ ︷︷ ︸
(K+2)×1

+ εt︸︷︷︸
min(Nt+1,2)×1

, εt ∼ N (0,Ht), (A8)

αt+1 =

 µh

β

xt+1


︸ ︷︷ ︸

(K+2)×1

=

 1 0 0

0 IK 0

0 0 ϕ


︸ ︷︷ ︸

(K+2)×(K+2)

 µh

β

xt


︸ ︷︷ ︸
(K+2)×1

+

 0

0

ηt


︸ ︷︷ ︸
(K+2)×1

, (A9)

where ηt ∼ N (0, σ2
η) and

 µh

β

x1


︸ ︷︷ ︸
(K+2)×1

∼ N


 µ0

β0

0


︸ ︷︷ ︸
(K+2)×1

,

 σ2
µ 0 0

0 σ2
βIK 0

0 0 σ2
eta/(1− ϕ2)


︸ ︷︷ ︸

(K+2)×(K+2)

 , (A10)

with Ht = diag(v2
ct1

(1), v2
ct,2

(Nt)) and

ỹt︸︷︷︸
min(Nt+1,2)×1

=

(
− log τt1 −mrt1(1)− log(zt1 + zt2)

− log τt2 −mrt2(Nt)− log(zt1 + zt2)

)
(A11)

First we draw ϕ, σ2
η from p(ϕ, σ2

η|γ, ν, C, τ,N, z1, z2, s, y). Notice that

p(ϕ, σ2
η|γ, ν, C, τ,N, z1, z2, s, y) = p(ϕ, σ2

η|ỹt, C,N) ∝ p(ỹt|ϕ, σ2
η, C,N)p(ϕ)p(σ2

η), (A12)

where ỹt is defined above in equation (A11). The likelihood can be evaluated using

the standard Kalman filter and prediction error decomposition (see e.g, Durbin and

Koopman, 2012) taking advantage of fact that conditional on the auxiliary variables

we have a linear Gaussian state space form given by equation (A8)–(A11). We draw

from the posterior using an adaptive random walk Metropolis-Hastings step proposed

by Roberts and Rosenthal (2009). Conditional on ϕ, σ2
η we draw µh, s and x from

p(µh, s, x|ϕ, σ2
η, γ, ν, C, τ,N, z1, z2, s, y), which is done simulating from the smoothed state

density of the linear Gaussian state space model given by (A8),(A9), (A10) and (A11).

We use the simulation smoother proposed by Durbin and Koopman (2002).
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D.2 Generating γ (Step 3)

Notice that we can simplify

p(γ|ν, µh, ϕ, σ2
η, x, C, s, τ,N, z1, z2, y) = p(γ|ν, µh, s, x, y) (A13)

because given ν, λ and y, the variables C, τ,N, z1, z2 are redundant. We can then decom-

pose

p(γ|ν, µh, s, x, y) ∝ p(y|γ, ν, µh, s, x)p(γ|ν, µh, s, x) = p(y|γ, ν, µh, s, x)p(γ) (A14)

as γ is independent from ν and λt = exp(µh + st + xt). Plugging in the formula for the

likelihood and for the prior for γ yields

p(y|γ, ν, µh, x)p(γ) =
T∏
t=1

[
γ1{yt=0} + (1− γ)

(
ν

λt + ν

)2ν (
λt

λt + ν

)|yt| Γ(ν + |yt|)
Γ(ν)Γ(|yt|)

× F

(
ν + yt, ν, yt + 1;

(
λt

λt + ν

)2
)]

γa−1(1− γ)b−1

B(a, b)

∝
T∏
t=1

[
γa(1− γ)b−11{yt=0} + γa−1(1− γ)b

(
ν

λt + ν

)2ν (
λt

λt + ν

)|yt|
× Γ(ν + |yt|)

Γ(ν)Γ(|yt|)
F

(
ν + yt, ν, yt + 1;

(
λt

λt + ν

)2
)]

.

We sample from this posterior using an adaptive random walk Metropolis-Hastings sam-

pler.

D.3 Generating C, τ,N, z1, z2, ν (Step 4)

To start with, we decompose the joint posterior of C, τ , N , z1, z2 and ν into

p(C, τ,N, z1, z2, ν|γ, µh, ϕ, σ2
η, s, x, y) =p(C|τ,N, z1, z2γ, p, µh, ϕ, σ

2
η, s, x, y)

× p(τ |N, z1, z2γ, ν, µh, ϕ, σ
2
η, s, x, y)

× p(N |z1, z2γ, ν, µh, ϕ, σ
2
η, s, x, y)

× p(z1, z2|γ, ν, µh, ϕ, σ2
η, s, x, y)

× p(ν|γ, µh, ϕ, σ2
η, s, x, y).
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Generating ν (Step 4a)

Note that

p(ν|γ, µh, ϕ, σ2
η, s, x, y) = p(ν|γ, λ, y)

∝ p(ν, γ, λ, y)

= p(y|γ, λ, ν)p(λ|γ, ν)p(γ|ν)p(ν)

= p(y|γ, λ, ν)p(λ)p(γ)p(ν)

∝ p(y|γ, λ, ν)p(ν),

where p(y|γ, λ, ν) is a product of zero inflated ∆NB probability mass functions.

We draw ν using a discrete uniform prior ν ∼ DU(2, 128) and a random walk proposal

in the following fashion as suggested by Stroud and Johannes (2014) for degree of free-

dom parameter of a t density. We can write the posterior as a multinomial distribution

p(ν|µh, x, z1, z2) ∼M(π∗2, . . . , π
∗
128) with probabilities

π∗ν ∝
T∏
t=1

[
γI{yt=0} + (1− γ)f∆NB(yt;λt, ν)

]
=

T∏
t=1

gν(yt).

To avoid the computationally intense evaluation of these probabilities we can use a

Metropolis-Hastings update. We can draw the proposal ν∗ from the neighborhood of the

current value ν(i) using a discrete uniform distribution ν∗ ∼ DU(ν(i) − δ, ν(i) + δ) and

accept with the probability

min

{
1,

∏T
t=1 gν∗(yt)∏T
t=1 gν(i)(yt)

}
,

where δ is chosen such that the acceptance rate is reasonable.

Generating z1, z2 (Step 4b)

Notice that given γ, µh, s, x and y the elements of the vectors z1 and z2 are independent

over time, so that their posterior distribution factorizes as follows

p(z1, z2|γ, ν, µh, ϕ, σ2
η, s, x, y) =

T∏
t=1

p(zt1, zt2|γ, ν, µh, ϕ, σ2
η, st, xt, yt).

Then we have for a single component

p(zt1, zt2|γ, ν, µh, ϕ, σ2
η, st, xt, yt) ∝p(zt1, zt2, γ, ν, µh, ϕ, σ2

η, st, xt, yt)

=p(yt|zt1, zt2, γ, ν, µh, ϕ, σ2
η, st, xt)

× p(zt1, zt2|γ, ν, µh, ϕ, σ2
η, st, xt),
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which we express as

p(zt1, zt2|γ, ν, µh, ϕ, σ2
η, st, xt, yt) ∝ g(zt1, zt2)

ννzνt1e
−νzt1

Γ(ν)

ννzνt2e
−νzt2

Γ(ν)
,

where

g(zt1, zt2) =

[
γ1{yt=0} + (1− γ) exp [−λt(zt1 + zt2)]

(
zt1
zt2

) yt
2

I|yt|(2λt
√
zt1zt2)

]
,

with λt = exp(µh + st + xt). We can carry out an independent MH step by sampling z∗1t

and z∗2t from Ga(λt, ν) with the acceptance probability equal to min
{
g(z∗1t,z

∗
2t)

g(zt1,zt2)
, 1
}
.

Generating N (Step 4c)

As described in Section 3.3.

Generating τ (Step 4d)

Notice that

p(τ |N, z1, z2, γ, ν, µh, ϕ, σ
2
η, x, y) = p(τ |N,µh, z1, z2, s, x).

Moreover

p(τ |µh, z1, z2, s, x) =
T∏
t=1

p(τ1t, τ2t|Nt, µh, zt1, zt2, st, xt),

=
T∏
t=1

p(τ1t|τ2t, Nt, µh, zt1, zt2, st, xt)p(τ2t|Nt, µh, zt1, zt2, st, xt),

where we can sample from p(τ2t|Nt, µh, zt1, zt2, st, xt) using the fact that conditionally on

Nt the arrival time τ2t of the Ntth jump is the maximum of Nt uniform random variables

and it has a Beta(Nt, 1) distribution. The arrival time of the (Nt + 1)th jump after 1 is

exponentially distributed with intensity λt(zt1 + zt2), hence

τ1t = 1 + ξt − τ2t, ξt ∼ Exp(λt(zt1 + zt2)).

Generating C (Step 4e)

Notice that

p(C|τ,N, z1, z2, γ, ν, µh, ϕ, σ
2
η, s, x, y) = p(C|τ,N, z1, z2, ν, s, x).
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Moreover,

p(C|τ,N, z1, z2, ν, s, x) =
T∏
t=1

min(Nt+1,2)∏
j=1

p(rtj|τt, Nt, µh, zt1, zt2, st, xt).

We can than sample ct1 from the following discrete distribution

p(ct1|τt, Nt, µh, zt1, zt2, st, xt) ∝ wk(1)ϕ(− log τ1t − log[λt(zt1 + zt2)],mk(1), v2
k(1)),

where k = 1, . . . , C(1). If Nt > 0 then draw rt2 from the discrete distribution

p(ct2|τt, Nt, µh, zt1, zt2, st, xt) ∝ wk(Nt)ϕ(− log τ1t − log[λt(zt1 + zt2)],mk(Nt), v
2
k(Nt)),

for k = 1, . . . , C(Nt).

E Data cleaning and trade durations

Tables 5–6 present the details of the data cleaning and aggregation procedure. Figure

8 presents the time series of the durations between the subsequent trades and their his-

tograms (on the log10 scale for the frequencies), which are based on the cleaned data.

Table 5: Summary of the cleaning and aggregation procedure on the data from 3rd to 10th Oct 2008 for IBM and KO.

IBM KO

# % dropped # % dropped

Raw quotes and trades 688 805 541 616

Trades 128 589 81.33 126 509 76.64

Non missing price and volume 128 575 0.01 126 497 0.01

Trades between 9:30 and 16:00 128 561 0.01 126 484 0.01

Aggregated trades 89 517 30.37 96 482 23.72

Without outliers 88 808 0.79 95 398 1.12

Without opening trades 88 802 0.01 95 392 0.01

Table 6: Summary of the cleaning and aggregation procedure on the data from 23rd to 30th April 2010 for IBM and KO.

IBM KO

# % dropped # % dropped

Raw quotes and trades 803 648 692 657

Trades 53 346 93.36 41 184 94.05

Non missing price and volume 53 332 0.03 41 173 0.03

Trades between 9:30 and 16:00 53 324 0.02 41 164 0.02

Aggregated trades 52 406 1.72 40 573 1.44

Without outliers 52 199 0.39 40 548 0.06

Without opening trades 52 193 0.01 40 542 0.01

44



0 1 2 3 4 5 6 7 8 9

Trades ×104

0

10

20

30

40

50

60

70

D
u
r
a
t
io
n

0 10 20 30 40 50 60 70

Duration

0

1

2

3

4

5

lo
g
1
0
fr
eq
u
en

cy

0 1 2 3 4 5 6

Trades ×104

0

20

40

60

80

100

120

D
u
r
a
t
io
n

0 20 40 60 80 100 120

Duration

0

1

2

3

4

5

lo
g
1
0
fr
eq
u
en

cy

(a) IMB

0 1 2 3 4 5 6 7 8 9 10

Trades ×104

0

10

20

30

40

50

60

D
u
r
a
t
io
n

0 10 20 30 40 50 60

Duration

0

1

2

3

4

5

lo
g
1
0
fr
eq
u
en

cy

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Trades ×104

0

20

40

60

80

100

120

140

D
u
r
a
t
io
n

0 20 40 60 80 100 120 140

Duration

0

1

2

3

4

5

lo
g
1
0
fr
eq
u
en

cy

(b) KO

Figure 8: Durations between trades and their log10 frequencies for IBM and KO, for the 2008 (top rows) and 2010 (bottom
rows) samples, respectively.
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F Intraday features, including overnight effects

In Figure 9 we present the estimated decompositions of the log volatility ht = µh + st +xt

where we compare the component and signal estimates based on the model parameters

that are estimated using all five days jointly and those from the model parameters that

are estimated for each day separately. The motivation of this comparison is to verify

whether the overnight effect, together with other intraday features, can be considered to

be the same for each trading day or whether such features change from day to day. For

our analysis of KO tick by tick transaction bid prices, we conclude that some features

(such as intraday persistence) can be different from day to day but that the overall effects,

including overnight effects, appear to be similar.
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Figure 9: Volatility decomposition ht = µh + st +xt KO tick bid price returns for the 2008 data: ∆NB model parameters
estimated based on the full sample (top two panels) and for each day separately (bottom two panels).
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